Electric & Hybrid Vehicle Technology International
  • News
    • A-F
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
    • G-K
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
    • L-Q
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
    • R-Z
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    • March 2025
    • November/December 2024
    • July 2024
    • March 2024
    • November 2023
    • July 2023
    • March 2023
    • Archive Issues
    • Subscribe Free!
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn YouTube X (Twitter)
Subscribe to Magazine SUBSCRIBE TO EMAIL NEWSLETTER MEDIA PACK
LinkedIn
Electric & Hybrid Vehicle Technology International
  • News
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    1. March 2025
    2. November/December 2024
    3. July 2024
    4. March 2024
    5. November 2023
    6. July 2023
    7. March 2023
    8. November 2022
    9. July 2022
    10. Archive Issues
    11. Subscribe Free!
    Featured
    March 24, 2025

    New issue available now! March 2025

    News By Web Team
    Recent

    New issue available now! March 2025

    March 24, 2025

    New issue available now! November/December 2024

    December 2, 2024

    In this issue – July 2024

    July 19, 2024
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn
Electric & Hybrid Vehicle Technology International
Battery Technology

Researchers develop electric vehicle battery made from seawater and wood

James BillingtonBy James BillingtonJune 17, 20213 Mins Read
Share LinkedIn Twitter Facebook Email

The rise of electric vehicles has driven the demand for batteries and the materials to produce them, however, raw materials for lithium-ion batteries are becoming more scarce or ethically troubling to extract. One company has claimed to have created the world’s most sustainable battery by being made from a mixture of materials including seawater and wood.

Altris AB has developed a sodium-ion battery cell that claims is not only competitive with lithium-ion batteries, but improves upon it in every key sustainability criteria. The cell also is said to match the performance, life-cycle and energy density of a lithium-ion battery based on a LFP cathode.

The battery, which was produced in partnership with Uppsala cell developer LiFeSiZE and financially supported by the Swedish Energy Agency, is based on Altris’ Fennac – a cathode material that is made up of elements that are widely abundant and have no geo-political sourcing issues: iron, air, seawater and wood. The performance of the material has many similarities with lithium iron phosphate (LFP) in that it has approximately the same voltage and capacity, with no thermal runawayEV. Compared to LFP though, Fennac removes the need to use copper in the battery cell, saving both on weight and cost.

The cathode material Fennac, also known as Prussian White

The cell is made up of:

A hard carbon anode made from biomass (from the paper industry or coconut shells), as opposed to mined graphite. Industry standard graphite requires harsh chemical treatments to be used and when the battery is no longer useful, so there is a high likelihood that its stored carbon will be released into the atmosphere. Synthetic graphite alternatives that exist also require tremendous amounts of energy to produce.

A fluorine free and non-flammable electrolyte that is made up of elements available in abundance. Using a fluoride free electrolyte avoids the big problems experienced with the industry standard polyfluorinated carbon chains (PFOS) and LiPF6.

A bio-based binder for the anode and cathode (as opposed to the fluorine-based binders that are standard in lithium-ion batteries).

A water solvent for the cathode and anode coating (eliminating the need for a very energy-consuming handling of the industry standard and poisonous NMP compound).

A cellulose-fiber-based separator, from renewable forestry products (as opposed to the fossil fuel oil-based products commonly used in lithium-ion batteries).

The cell in essence also becomes a carbon sink and when recycled it will not add any CO2 into the atmosphere as any other type of battery would.

Altris, in partnership with LiFeSiZE, has so far developed 300 mAh cells (which have been cycled more than 100 times) and an 800 mAh cell (which is still undergoing cycle testing).

In the coming months, Altris has said it continues to work with LiFeSiZE to optimize the cell’s cycling parameters, the last stepping stone before producing larger cells. Bigger battery cells will then be produced (up to 10 Ah), with greater energy density (more than 100 Wh/kg) as well as testing the life cycle performance to a commercial level (more than 500 cycles). The cells will also undergo advanced fire testing.

Altris believes that all batteries should enable a renewable future without an increase in cost to the customer or the environment. To this end, Altris is currently collaborating with Swedish, European and Asian partners to introduce this technology to the mass market.

Share. Twitter LinkedIn Facebook Email
Previous ArticleDesigning the EV battery of the future
Next Article Hydrogen-powered Land Rover Defender announced
James Billington

Related Posts

Battery Technology

BMW and Solid Power achieve milestone with first ASSB road test

May 20, 20252 Mins Read
Battery Technology

Altilium successfully tests EV batteries made with recycled materials

May 15, 20252 Mins Read
Battery Technology

24M Technologies urges battery redesign to prevent costly EV fire recalls

May 8, 20252 Mins Read
Latest Posts

BMW and Solid Power achieve milestone with first ASSB road test

May 20, 2025

Fiat reimagines iconic Panda 4×4 with innovative powertrain

May 20, 2025

FEATURE: Volvo Construction Equipment

May 19, 2025
Our Social Channels
  • YouTube
  • LinkedIn
Getting in Touch
  • Free Email Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Thursday


© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.