Electric & Hybrid Vehicle Technology International
  • News
    • A-F
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
    • G-K
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
    • L-Q
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
    • R-Z
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    • March 2025
    • November/December 2024
    • July 2024
    • March 2024
    • November 2023
    • July 2023
    • March 2023
    • Archive Issues
    • Subscribe Free!
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn YouTube X (Twitter)
Subscribe to Magazine SUBSCRIBE TO EMAIL NEWSLETTER MEDIA PACK
LinkedIn
Electric & Hybrid Vehicle Technology International
  • News
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    1. March 2025
    2. November/December 2024
    3. July 2024
    4. March 2024
    5. November 2023
    6. July 2023
    7. March 2023
    8. November 2022
    9. July 2022
    10. Archive Issues
    11. Subscribe Free!
    Featured
    March 24, 2025

    New issue available now! March 2025

    News By Web Team
    Recent

    New issue available now! March 2025

    March 24, 2025

    New issue available now! November/December 2024

    December 2, 2024

    In this issue – July 2024

    July 19, 2024
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn
Electric & Hybrid Vehicle Technology International
Battery Technology

Chung-Ang University achieves high-safety ultra-fast charging for lithium batteries

Web TeamBy Web TeamFebruary 7, 20243 Mins Read
Share LinkedIn Twitter Facebook Email
Scientists have presented advancements in electrolyte design to control polarization in lithium-ion batteries.

Lithium-ion batteries, essential for electric vehicles, face safety concerns due to polarization effects during fast charging. Researchers have now studied the impact of high-concentration electrolytes on their interface kinetics and stability, demonstrating their effectiveness in improving fast-charging abilities and preventing issues like cell swelling caused by lithium plating. These insights are expected to encourage the widespread adoption of electric vehicles and play a crucial role in reducing carbon emissions.

Lithium-ion (Li-ion) batteries are indispensable for modern devices like electric vehicles, which are playing an increasingly crucial role in people’s lives. However, to fully electrify vehicles with Li-ion batteries, the main hurdle is achieving rapid charging without compromising energy density. The convenience and acceptance of electric vehicles by consumers are also influenced by factors such as their range and charging times. Additionally, the utilization of Li plating for ultra-fast charging raises safety concerns due to high cell polarization, requiring careful attention.

In a new study published in Energy Storage Materials, led by Associate Professor Janghyuk Moon of Chung-Ang University, researchers have introduced an innovative strategy to mitigate polarization due to concentration-based effects, addressing this challenge. Their paper was made available online on September 30, 2023, and published in Volume 63 of the journal in November 2023.

“Our study aims to enhance the range and reduce charging times of electric vehicles by developing advanced battery technologies, specifically leveraging the commonly used LiPF6 and linear carbonates in commercial batteries,” said Dr. Moon. “By improving the kinetics and stability of batteries under fast charging conditions, we hope to make a meaningful impact on the EV industry and ultimately on people’s daily lives.”

This study investigated how using certain electrolytes, such as linear carbonate-based ones with concentrated LiPF6, affects the process of removing the solvent (desolvation) from Li-ion and its quick insertion into the graphite anode. To make this happen, electrolytes with low activation energy, including dimethyl carbonate, ethyl methyl carbonate, and diethyl carbonate with a special focus on dimethyl carbonate, were used to make it easier to overcome the barrier to desolvation. Laboratory tests confirmed that these electrolytes enhance the fast-charging capabilities of Li-ion batteries, as evidenced by a 1.2-Ah pouch cell retaining three times more capacity over 200 cycles. It also prevented cell swelling caused by Li plating, a common issue with traditional electrolytes.

The study also utilized “molecular dynamics” to theoretically simulate liquid electrolyte structures at varying concentrations, both high and low. These aimed to understand micro-environmental changes within the battery system, offering insights into how the electrolyte affects interface kinetics and battery performance. This combined approach of practical experimentation and computational analysis highlights the significance of this study in advancing battery technology for practical applications, particularly in electric vehicles.

“By enhancing battery performance in terms of faster charging and extended range, this study directly contributes to making electric vehicles more practical and appealing to a broader electric vehicle user,” said Dr. Moon. “If this leads to increased convenience for people, it could further boost the widespread adoption of these vehicles. In the long term, such technological improvements could play a crucial role in reducing carbon emissions and mitigating climate change, profoundly impacting people’s lives and the health of our planet.”

Share. Twitter LinkedIn Facebook Email
Previous ArticleGreen NCAP awards all electric MG4 SE Long Range five-star rating
Next Article Incheon National University-Harvard University joint research team improves fuel cell durability
Web Team

Related Posts

News

Alpine introduces latest all-electric model to Dream Garage range

May 28, 20255 Mins Read
Schaltbau's megawatt charging technology being used on a vehicle
Battery Technology

Schaltbau to highlight megawatt charging technology at The Battery Show Europe 2025

May 28, 20252 Mins Read
Battery Technology

Turntide’s Gen 5 battery offers OEMs faster market entry with built-in safety standards

May 28, 20252 Mins Read
Latest Posts

Alpine introduces latest all-electric model to Dream Garage range

May 28, 2025
Schaltbau's megawatt charging technology being used on a vehicle

Schaltbau to highlight megawatt charging technology at The Battery Show Europe 2025

May 28, 2025

Turntide’s Gen 5 battery offers OEMs faster market entry with built-in safety standards

May 28, 2025
Our Social Channels
  • YouTube
  • LinkedIn
Getting in Touch
  • Free Email Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Thursday


© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.