Electric & Hybrid Vehicle Technology International
  • News
    • A-F
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
    • G-K
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
    • L-Q
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
    • R-Z
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    • March 2025
    • November/December 2024
    • July 2024
    • March 2024
    • November 2023
    • July 2023
    • March 2023
    • Archive Issues
    • Subscribe Free!
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn YouTube X (Twitter)
Subscribe to Magazine SUBSCRIBE TO EMAIL NEWSLETTER MEDIA PACK
LinkedIn
Electric & Hybrid Vehicle Technology International
  • News
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    1. March 2025
    2. November/December 2024
    3. July 2024
    4. March 2024
    5. November 2023
    6. July 2023
    7. March 2023
    8. November 2022
    9. July 2022
    10. Archive Issues
    11. Subscribe Free!
    Featured
    March 24, 2025

    New issue available now! March 2025

    News By Web Team
    Recent

    New issue available now! March 2025

    March 24, 2025

    New issue available now! November/December 2024

    December 2, 2024

    In this issue – July 2024

    July 19, 2024
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn
Electric & Hybrid Vehicle Technology International
Manufacturing

Cleaner EV batteries: Inspection technology can detect ‘the smallest’ of battery particle contamination

James BillingtonBy James BillingtonAugust 18, 20223 Mins Read
Share LinkedIn Twitter Facebook Email

A new inline inspection method that can detect particle contamination in the assembly of battery modules has been developed to help prevent battery performance impairment and fire risk.

Created by German company Vitronic, the inspection method offers OEMs and suppliers to ensure the Technical Cleanliness (TecSa) of the assemblies and increase product quality and safety. The inspection system could be used in the planned European Gigafactories.

Since battery modules are not produced in a defined cleanroom environment, they can be contaminated with particles. These arise directly in the manufacturing process, for example through abrasion. They can also originate from the environment or from previous steps in the supply chain.

Dirt particles on battery modules can, among other things, penetrate the separator foil between two mounted battery cells. Current then flows between the cell housings, creating a short circuit. The current flow heats the cell. The heat can reduce the performance of the individual cells, destroy the cells or, in the worst case, ignite them.

Vitronic has developed a new inspection system for precisely this purpose: it allows battery cells and modules to be inspected for particle contamination directly in the assembly line. A first system is already in use and is being tested. The camera sensors used can detect the smallest particles to ensure process reliability. The definition of the permissible particle size always considers required parameters such as accuracy, speed, and cost. The components are inspected directly in the line at two stations: first the sides of the individual battery cells and later the bottom of the entire assembled module. This reliably detects residual particles and ensures Technical Cleanliness in accordance with the industry standard.

As a result of recent political and business initiatives, European production of electric vehicles and batteries is increasing rapidly; dozens of manufacturing plants are planned or already under construction. In this context, Europeans follow their usual high quality and safety standards. Although Chinese manufacturers, for example, are often still pioneers in terms of technology, they apply much lower standards when it comes to quality assurance. Therefore, solutions for this cannot be adopted, but must be newly developed.

An important standard in battery cell assembly is the so-called Technical Cleanliness, abbreviated TecSa. The guideline of the ZVEI (German association of the electrical and digital industry) defines Technical Cleanliness as follows: no particles – metallic, non-metallic, fibers, etc. – may be present on components that could impair or prevent the function of the components or assemblies or the further manufacturing process.

The industry association TecSa has published two sets of rules for this purpose: VDA 19.1 (Testing of Technical Cleanliness – Particle contamination of functionally relevant automotive parts) and VDA 19.2 (Technical Cleanliness in assembly). The ISO 16232:2018 standard (Road vehicles – Cleanliness of components and systems) is the international equivalent.

Even if it is difficult to prove manufacturers assume that some fires of e-vehicles are due to particle contamination. The more batteries and vehicles are produced, the greater the likelihood of such incidents – and the pressure to develop solutions to minimize the risk.

Impurities cannot be prevented, reliable inspection methods are needed to detect them retrospectively. Ideally, testing is carried out at two process steps: during the manufacture of the battery cells (usually at the supplier) and during module assembly (usually at the vehicle manufacturer).

Share. Twitter LinkedIn Facebook Email
Previous ArticlePolestar 6: Plans for drop-top, electric performance roadster unveiled
Next Article New test rig developed to create more advanced and efficient EVs
James Billington

Related Posts

Manufacturing

Ampere introduces software-defined vehicle platform for Renault’s commercial fleet

April 23, 20252 Mins Read
Features

FEATURE: Electrifying the workforce

April 2, 20257 Mins Read
Manufacturing

Altilium achieves UK first with recycled EV battery production

March 18, 20252 Mins Read
Latest Posts

The right laser optic for every weld

May 22, 2025

Tesla loses European market lead to BYD amid shifting EV landscape

May 22, 2025

BMW and Solid Power achieve milestone with first ASSB road test

May 20, 2025
Our Social Channels
  • YouTube
  • LinkedIn
Getting in Touch
  • Free Email Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Thursday


© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.