Electric & Hybrid Vehicle Technology International
  • News
    • A-F
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
    • G-K
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
    • L-Q
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
    • R-Z
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    • March 2025
    • November/December 2024
    • July 2024
    • March 2024
    • November 2023
    • July 2023
    • March 2023
    • Archive Issues
    • Subscribe Free!
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn YouTube X (Twitter)
Subscribe to Magazine SUBSCRIBE TO EMAIL NEWSLETTER MEDIA PACK
LinkedIn
Electric & Hybrid Vehicle Technology International
  • News
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    1. March 2025
    2. November/December 2024
    3. July 2024
    4. March 2024
    5. November 2023
    6. July 2023
    7. March 2023
    8. November 2022
    9. July 2022
    10. Archive Issues
    11. Subscribe Free!
    Featured
    March 24, 2025

    New issue available now! March 2025

    News By Web Team
    Recent

    New issue available now! March 2025

    March 24, 2025

    New issue available now! November/December 2024

    December 2, 2024

    In this issue – July 2024

    July 19, 2024
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn
Electric & Hybrid Vehicle Technology International
Manufacturing

Researchers discover ‘perfect’ way to recycle electric car batteries

James BillingtonBy James BillingtonFebruary 24, 20223 Mins Read
Share LinkedIn Twitter Facebook Email

Recycling of electric car batteries can be easier, cheaper, and more environmentally friendly, according to a new scientific article from Chalmers University of Technology, Sweden, which outlines an optimized recycling process.

The research, published in the journal Waste Management, has been carried out by some of the world’s foremost experts in the field, and represents a vital step towards the electromobility society of the future.

As the use of electric vehicles (EVs) increases, recycling and recovery processes for EV batteries and the critical raw metals used in their production are becoming an increasingly important area of research. One method that currently attracts a lot of interest is a combination of thermal pretreatment and hydrometallurgy, in which aqueous chemistry is used to recover the metals. Several companies are developing systems that will use this combination, but the researchers at Chalmers University of Technology, Sweden, discovered that these companies use widely differing temperatures and times in their processes, and that there was a great need for a comparative study to determine the optimal thermal treatment and hydrometallurgical process for recycling lithium-ion batteries.

A key finding of the new study was that the hydrometallurgical process can be carried out at room temperature. This is something that has not been previously tested before, but can yield major benefits in the form of reduced environmental impacts and lower costs for recycling the batteries. The process can also be carried out significantly quicker than previously thought.

“Our research can make a huge difference for developers in this area. In some cases it can be as much as reducing the temperature from between 60 and 80 degrees Celsius, down to room temperature, and from several hours to just 30 minutes,” says Burcak Ebin, researcher at the Department for Chemistry and Chemical Engineering at Chalmers and one of the main authors of the article.

The researchers investigated how the different steps – thermal pretreatment and hydrometallurgy –are affected by each other. An important comparison was made between two different approaches to thermal pre-treatment – incineration or pyrolysis. The latter is without oxygen and is considered more environmentally friendly, and the researchers determined that this gave the best results.

“To meet the huge need for battery recycling that is coming, the processes currently in use must be made as effective and efficient as possible, so this study offers invaluable knowledge for the manufacturers and operators of this technology. The methods we present can also be used to optimize the recycling of all kinds of lithium-ion batteries,” explains Martina Petranikova, Associate Professor at the Department of Chemistry and Chemical Engineering at Chalmers, who has also worked with Northvolt, one of Europe’s largest battery manufacturers, helping to develop and implement their recycling processes.

If recycling of electric car batteries is to reach the volumes required for the future, the costs must be radically reduced. Improving the processes is therefore a crucial challenge.

“To reduce the costs, we need to cut the steps in the recycling process. We are working on several projects with that aim right now, and close collaborations and good communication between researchers and the developers of the technology will be extremely important for us to succeed with the challenges we face,” said Petranikova.

An example of this is visible in connection to a new trend that has spread among the producers of EV batteries – solid state batteries. These batteries contain significantly more different metals, which makes the recycling much harder.

“As researchers we see a vital need to agree on a global standard for a maximum number of metals in these batteries,” Petranikova added.

Share. Twitter LinkedIn Facebook Email
Previous ArticleNissan launches facelift electric Leaf 2022
Next Article Polestar 0: Automaker aims to create climate-neutral car by 2030
James Billington

Related Posts

Manufacturing

Ampere introduces software-defined vehicle platform for Renault’s commercial fleet

April 23, 20252 Mins Read
Features

FEATURE: Electrifying the workforce

April 2, 20257 Mins Read
Manufacturing

Altilium achieves UK first with recycled EV battery production

March 18, 20252 Mins Read
Latest Posts

Tesla loses European market lead to BYD amid shifting EV landscape

May 22, 2025

BMW and Solid Power achieve milestone with first ASSB road test

May 20, 2025

Fiat reimagines iconic Panda 4×4 with innovative powertrain

May 20, 2025
Our Social Channels
  • YouTube
  • LinkedIn
Getting in Touch
  • Free Email Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Thursday


© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.