Charging ahead?

0

Ashley Sudding, key account manager for innovation at business performance consultancy Ayming, explores why wireless charging might be key to the electric vehicle revolution

Amid rising concerns about poor air quality and pollution and their effects on the health of Londoners – including premature deaths – the electric car can be the savior of our choking cities.

The year is 1884, and inventor Thomas Parker, who was responsible for electrifying the London Underground, produces the first factory-made electric car in the capital.

More than 33,000 electric cars were eventually registered in the USA alone by 1910. But the electric car revolution was short-lived. That was the peak. The reasons for its 1920s decline were manifold.

Road infrastructure was improving, opening up highways for vehicles with a greater range. With their lead-acid batteries, electric cars were limited to cities by low 15-20mph (24-32km/h) speeds and a short 30-40-mile (48-64km) range.

The discoveries of abundant reserves of petroleum around the world made petrol affordable, and cars powered by the internal combustion engine became easier and cheaper to operate.

Technological improvements played their part – like the electric starter, invented in 1912, and mufflers. Drivers no longer needed to hand-crank engines and motor noise became bearable.

Then Henry Ford began mass production of petrol gas-powered cars, driving down prices, as the cost of electric cars rose.

Cultural factors were at play too. People loved the speed and sound of petrol cars. The love affair with the motor car had begun.

Going electric – again

With the passing years, the consequences of this love affair, especially in cities, have become impossible even for petrolheads to ignore. More than a century on from Parker’s prototype, the second coming of the electric vehicle is overdue and highly significant.

In 2004, Tesla began developing the Roadster. “We will not stop until every car on the road is electric,” declared founder Elon Musk. Never given to understatement, he may be proven right – hydrogen-powered vehicles, the other great hope for zero-emission transport, also use electric motors.

The batteries of electric vehicles are still more expensive than combustion engines, but costs halved in the three years from 2014-2016. With ongoing scale and process improvements, electric cars may even gain a competitive edge.

Their range has also improved – from a 2011 median of 73 miles (117km) to 114 miles (183km) in 2017. Although more than enough for a few days’ average commute, range is still cited as drivers’ biggest concern.

Infrastructure

This time the lack of a universal network of charging points may prove more of a barrier to faster and more widespread adoption.

Imagine if you could charge your car like a smartphone or electric toothbrush. That technology has already arrived. Not only is wireless charging feasible for a parked car, it is even possible while driving at speeds up to 100km/h. Inductive charging transfers electricity through the air from a magnetic coil in the charger – embedded in the road surface – to a second coil fitted to the underside of the car. It is the same as when you lift your phone very slightly off its charger, the power still passes, but over a distance measured in inches, not millimeters.

Commercially available wireless car chargers, like those sold by US firm Plugless, pass electricity across an air gap of 4in to a wireless adaptor fitted to the underside of the vehicle.

Qualcomm says its Halo system can transfer power at up to 22kW, the same as ‘rapid’ public chargers capable of adding 80 miles (129km) of range per hour. Halo has been tested in the harsh racing environment of Formula E over the past three years. Qualcomm claims 90% efficiency, meaning 10% of electricity is lost while being zapped across the air gap.

The company has already proven its dynamic electric vehicle charging (DEVC) technology on a short test track in France with sub-surface chargers. A fleet of Renault Kangoo electric vans were each fitted with two 10kW charging pads. When driven along the road they picked up tiny amounts of energy from each charger. While the batteries don’t refill, crucially they don’t lose any power en route.

Furthermore, this was a regular road surface, and Qualcomm says it was not affected by rainfall. Charging at 20kW was possible at speeds of 62mph (100km/h).

The UK government wants to kickstart wireless charging solutions on roads as part of a £40m (US$51.5m) research and development competition run by Innovate UK.

Sweden has just opened a 2km stretch of road with an electric rail; unfortunately, the infrastructure costs of this could be prohibitive.

Dynamic charging may be some way off, but the wireless charging market for stationary vehicles is buzzing. As well as Plugless – which sells pads for Tesla, Nissan and Chevrolet – BMW offers a pad for its 530e iPerformance hybrid. Qualcomm doesn’t manufacture, but licenses companies such as Chargemaster, Efacec, Brusa, Ricardo, Lear, Lumen and Preh.

Other players are Honda and Toshiba, which uses magnetic resonance technology (with a tolerance for misalignment of up to 20cm).

This charging technology has major implications not just for electric vehicles but other market sectors – from house builders to insurance companies, highway contractors to the motor industry.

Infrastructure will be crucial. The UK government’s Go Ultra Low campaign estimates that up to 90% of EV charging takes place at home. Car owners without a driveway or garage will be reluctant to make the leap to electric. The UK is reported to have around 16,000 charging points for 150,000 registered EVs, and just one rapid charger for every 43 cars.

Road to zero

A UK strategy to plug that gap was launched in July 2018. The government wants half of all new vehicles to be ultra-low emitters by 2030, with the sale of petrol and diesel cars and vans to end by 2040.

The Road to Zero strategy calls for charge points in newly built homes. A £400m (US$515m) Charging Infrastructure Investment Fund will encourage new and existing players to accelerate the roll-out of public charging points. The previously mentioned £40m program for low-cost wireless charging on-street could also see charging points in lamp posts; some in Hounslow, London, have been retrofitted in a pilot scheme.

Homeowners may get up to £500 (US$640) to install charge points, with increased grants for workplaces, and continued support – at least in the short term – for buyers of electric cars and vans. A joint taskforce from the energy and auto industries is the other initiative.

This Electric Vehicle Energy Taskforce has its work cut out.

So far there has been little or no consistency of technical specs, connectors or payment systems. Putting chargers in lamp posts may sidestep street clutter, but they trickle power at 2kWh (compared with 7kWh from dedicated street charging points), can’t be booked, and create a trip hazard.

A shortfall of more than 80% in charging points has been predicted from the more than 83,000 needed to meet expected growth in the EV market to 2020.

Transportation accounts for some 28% of the UK’s greenhouse gas emissions. If we are to decarbonize our driving, a dense, user-friendly and standardized fast-charging network will be essential.

Wireless charging pads in parking spaces, on- and off-street, are a smart solution, easier than refueling a petrol/diesel car. And on-the-go dynamic charging would give the electric vehicle revolution unstoppable momentum, finally parking vehicles that burn fossil fuel in transportation history.

About Author

Independently submitted opinions from our readers. Share your opinions by sending up to 500 words to matt.ross@ukimediaevents.com and you could earn US$100! Note: Payment will be made on publication on electrichybridvehicletechnology.com. Only original contributions will be considered and the editor's decision is final.

Comments are closed.