Electric & Hybrid Vehicle Technology International
  • News
    • A-F
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
    • G-K
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
    • L-Q
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
    • R-Z
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    • March 2025
    • November/December 2024
    • July 2024
    • March 2024
    • November 2023
    • July 2023
    • March 2023
    • Archive Issues
    • Subscribe Free!
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn YouTube X (Twitter)
Subscribe to Magazine SUBSCRIBE TO EMAIL NEWSLETTER MEDIA PACK
LinkedIn
Electric & Hybrid Vehicle Technology International
  • News
      • Battery Technology
      • Buses & Commercial Vehicles
      • Charging Technology
      • Concept Vehicle
      • Electrification Strategies
      • Fuel-cell Technology
      • Hybrid Powertrain
      • Hybrid/electric Architecture
      • ICE Hybrids
      • Industry News
      • Joint Ventures
      • Manufacturing
      • Materials Research
      • Motor Technology
      • Motorsport Electrification
      • NVH
      • OEM News
      • Powertrain Components
      • Pure-electric Powertrain
      • Range Extender
      • Solid-state Battery Technology
      • Testing
      • Transmissions
  • Features
  • Online Magazines
    1. March 2025
    2. November/December 2024
    3. July 2024
    4. March 2024
    5. November 2023
    6. July 2023
    7. March 2023
    8. November 2022
    9. July 2022
    10. Archive Issues
    11. Subscribe Free!
    Featured
    March 24, 2025

    New issue available now! March 2025

    News By Web Team
    Recent

    New issue available now! March 2025

    March 24, 2025

    New issue available now! November/December 2024

    December 2, 2024

    In this issue – July 2024

    July 19, 2024
  • Technical Articles
  • Opinion
  • Videos
  • Supplier Spotlight
  • Webinars
  • Events
LinkedIn
Electric & Hybrid Vehicle Technology International
Powertrain Components

Cissoid announces new Intelligent Power Module for E-mobility

James BillingtonBy James BillingtonMay 1, 20202 Mins Read
Share LinkedIn Twitter Facebook Email

Cissoid, a leader in high-temperature semiconductors has launched a new 3-Phase SiC MOSFET Intelligent Power Module (IPM) platform for E-mobility. This new IPM technology offers the automotive market an all-in-one solution including a 3-Phase water-cooled SiC MOSFET module with built-in gate drivers.

Co-optimizing the electrical, mechanical and thermal design of the power module and its proximity control, this new scalable platform will improve time-to-market for electric car OEMs and electric motor manufacturers willing to rapidly adopt SiC-based inverters for more efficient and compact motor drives. With this SiC-based IPM solution, CISSOID maintains its focus on addressing challenges for automotive and industrial markets.

The first product out of this scalable platform, a 3-Phase 1200V/450A SiC MOSFET IPM, features low conduction losses, with 3.25mOhms On resistance, and low switching losses, with respectively 8.3mJ turn-on and 11.2mJ turn-off energies at 600V/300A. It reduces losses by at least a factor 3 with respect to state-of-the-art IGBT power modules. The new module is water-cooled through a lightweight AlSiC pin-fin baseplate for a junction-to-fluid thermal resistance of 0.15°C/W. The power module is rated for junction temperature up to 175°C. The IPM withstands isolation voltages up to 3600V (50Hz, 1min).

The built-in gate driver includes three on-board isolated power supplies (one per phase) delivering each up to 5W allowing to easily drive the power module up to 25KHz and at ambient temperatures up to 125°C. Peak gate current up to 10A and immunity to high dV/dt (>50KV/µs) enable fast switching of the power module and low switching losses. Protection functions such as Undervoltage Lockout (UVLO), Active Miller Clamping (AMC), Desaturation Detection and Soft-Shut-Down (SSD) ensure the safe drive and reliable operation of the power module in case of fault events.

“Developing and optimizing fast-switching SiC Power Modules and driving them reliably remains a challenge” says Dave Hutton, CEO at CISSOID. “With this new SiC Intelligent Power Modules, which is the outcome of years of experience in the development of power modules and gate drivers for extreme temperature and voltage environments, we are happy to deliver our first IPM samples to early SiC adopters and to support the automotive industry in its transition towards highly efficient E-mobility solutions.”

Share. Twitter LinkedIn Facebook Email
Previous ArticleLexus talks through its new electrification strategy
Next Article Speedtail: McLaren reveals ‘engineering secrets’ behind its fastest-ever car
James Billington

Related Posts

News

BorgWarner supplies Polestar BEV SUVs with eTVD systems

May 9, 20242 Mins Read
News

FEATURE: Luxury materials and a private jet-inspired interior are brought together in the Lexus LM hybrid

April 22, 20245 Mins Read
News

Equipmake and Perkins collaborate on advanced E-powertrain systems for off-highway hybrid vehicles

October 11, 20232 Mins Read
Latest Posts

The right laser optic for every weld

May 22, 2025

Tesla loses European market lead to BYD amid shifting EV landscape

May 22, 2025

BMW and Solid Power achieve milestone with first ASSB road test

May 20, 2025
Our Social Channels
  • YouTube
  • LinkedIn
Getting in Touch
  • Free Email Newsletters
  • Meet the Editors
  • Contact Us
  • Media Pack
FREE WEEKLY NEWS EMAIL!

Get the 'best of the week' from this website direct to your inbox every Thursday


© 2023 Mark Allen Group Ltd | All Rights Reserved
  • Cookie Policy
  • Privacy Policy
  • Terms & Conditions

Type above and press Enter to search. Press Esc to cancel.